

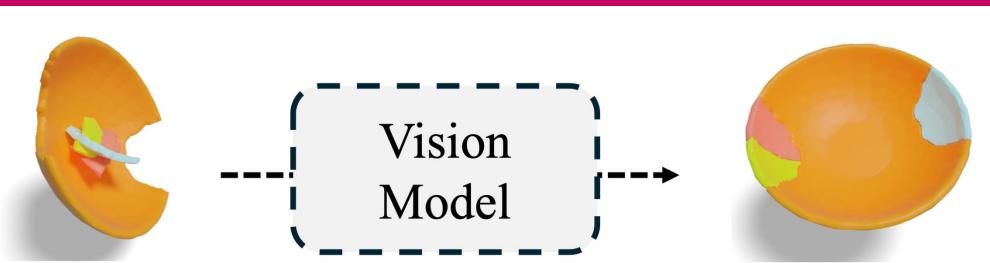
Combinative Matching for Geometric Shape Assembly

Nahyuk Lee^{1*} Juhong Min^{1,2*} Junhong Lee¹

¹ Pohang University of Science and Technology (POSTECH)

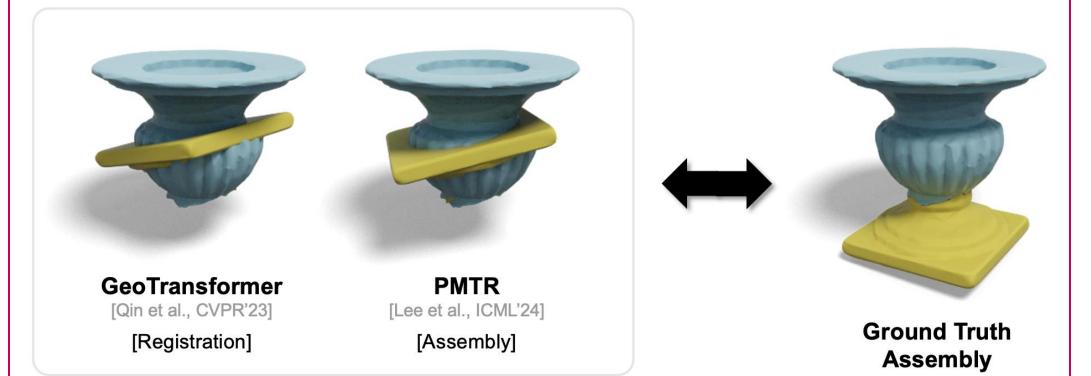
Chunghyun Park ¹ Minsu Cho^{1,3}

² Samsung Research America ³ RLWRLD



Project page

Geometric Shape Assembly?



Input Parts Assembly

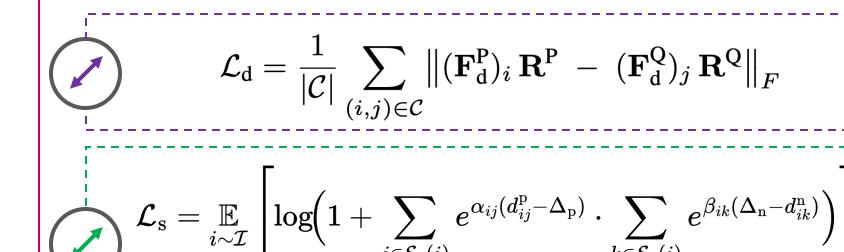
Given a set of fractured parts, our goal is to predict the **6-DoF pose in SE(3) for each part** to restore the underlying object

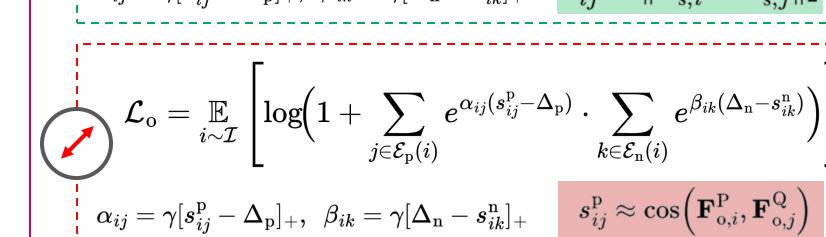
Motivation and Overview

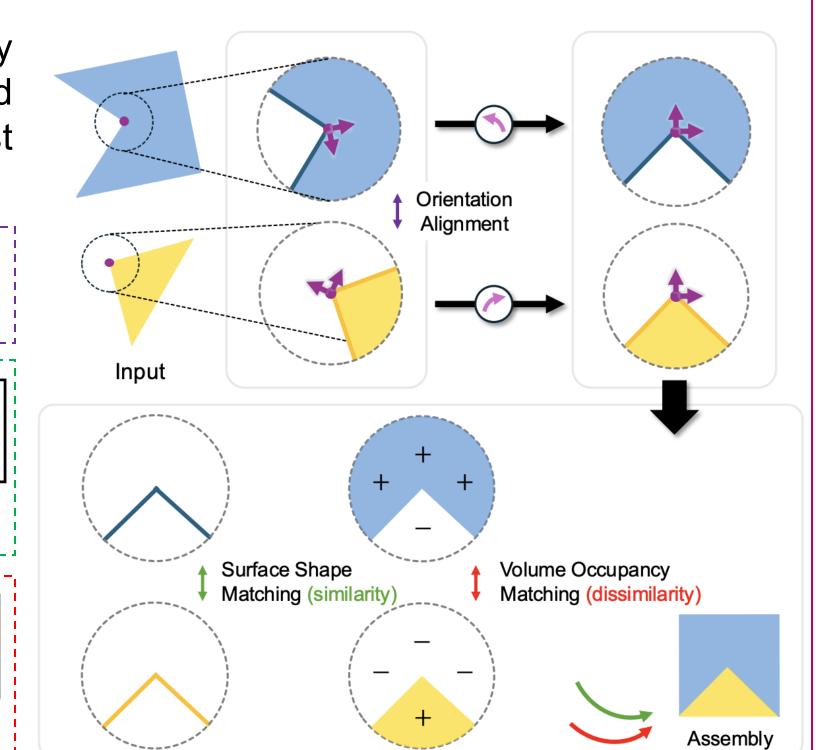
Traditional shape matching methods rely on *equative matching strategy*, which assumes that mating parts resemble each other at their surfaces.

Often falls short in geometric shape assembly, where parts are not merely visually similar, but are structurally complementary.

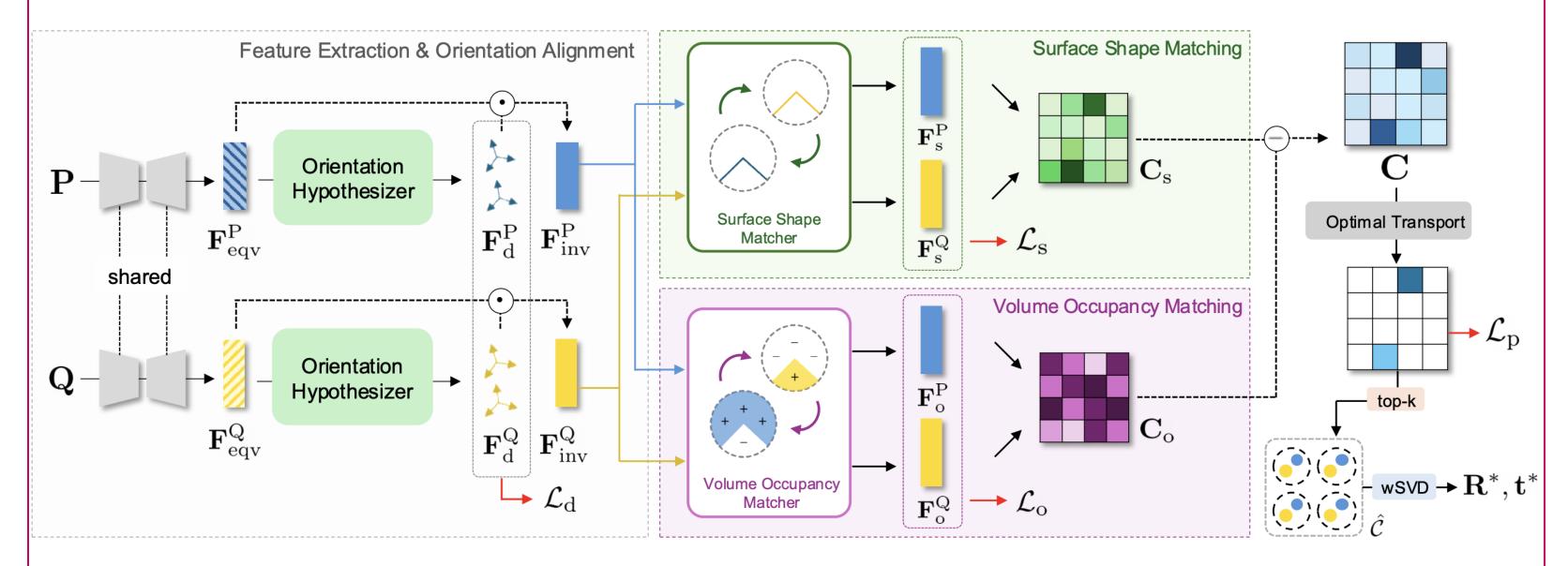
Then, what do we miss? 🤃


Complementary properties: Surfaces must not only look alike but also fit by occupying opposite volumes.


Main Contributions


- Combinative Matching: a new shape-matching methodology to combine interlocking parts for shape assembly.
- Combinative Matching Network: a framework utilizing combinative matching, achieving SoTA on Breaking Bad.

Learning to interlock parts: Combinative Matching


We propose *Combinative Matching*, explicitly modeling both identical surface shapes and opposite volume occupancy, enabling robust combination of interlocking parts.

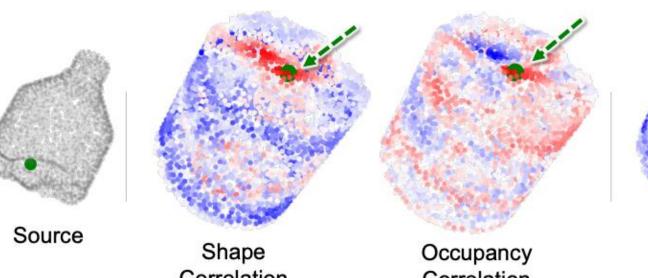
Combinative Matching Network (CMNet)

Step 1. Orientation Alignment

- Encode rotation-equivariant features (w/ VN-Layers)
- Predict per-point orientations
- Derive rotation-invariant embeddings via dot-product

Step 2. Combinative Matching

- Dual matching branches:
 shape & occupancy matching
 Learn to align both identical
- Learn to align both identical surface shape and opposite volume occupancy


Step 3. Transformation Estimation

- Combine shape / occupancy correlations → Optimal Transport
- Estimate SE(3) pose via wSVD
- Further utilized as pairwise matcher for multi-part assembly

Experiments and Analysis

Learned Descriptor Analysis

(left: correlation distribution, right: orientation visualization)

By combining shape and occupancy information, the local ambiguity and match confidence uncertainty are resolved.

Learned orientations capture complementarity between parts without any explicit supervision.

Assembly

Ablation Studies on Combinative Matching

Occupancy Affinity	Orientation Loss (\mathcal{L}_d)	$\begin{array}{ c c } CRD \downarrow \\ (10^{-2}) \end{array}$	$\begin{array}{c} \text{CD} \downarrow \\ (10^{-3}) \end{array}$	$RMSE(R) \downarrow (^{\circ})$	$RMSE(T) \downarrow (10^{-2})$
L2 dist	X	0.42	0.31	14.88	4.31
cosine	×	0.31	0.21	14.58	4.44
L2 dist	✓	0.38	0.30	13.29	3.81
cosine	✓	0.28	0.17	12.88	3.78
	/ \ \ \ 1 1 1 · ·	•			

(a) Ablation study on combinative matching.

Learning complementary volume occupancy under orientation alignment is crucial for accurate geometric shape assembly.

Equivariant Embedding	Shape Matching	Occupancy Matching	$\begin{array}{c c} \text{CRD} \downarrow \\ (10^{-2}) \end{array}$	$\begin{array}{c} \text{CD} \downarrow \\ (10^{-3}) \end{array}$	$RMSE(R) \downarrow (^{\circ})$	$RMSE(T) \downarrow (10^{-2})$
X	✓	/	0.74	0.53	38.74	11.88
✓	×	✓	0.38	0.28	13.17	3.86
✓	✓	×	0.35	0.25	14.01	4.24
✓	✓	✓	0.28	0.17	12.88	3.78

(b) Ablation study on model components.

Incorporating joint shape and occupancy matching under SO(3)-equivariance significantly enhances the assembly accuracy and robustness.

Improving SOTA for Geometric Shape Assembly

(top: pairwise assembly, bottom: multi-part assembly)

Method	$\begin{array}{c} \text{CRD} \downarrow \\ (10^{-2}) \end{array}$	$\begin{array}{c} \text{CD} \downarrow \\ (10^{-3}) \end{array}$	$RMSE(R) \downarrow \\ (^{\circ})$	$RMSE(T) \downarrow (10^{-2})$	
everyday					
Wu et al. [44]	20.65	11.66	84.58	22.90	
GeoTransformer [32]	0.61	0.51	22.81	7.28	
Jigsaw [22]	5.48	1.34	38.73	2.73	
PMTR [14]	0.39	0.25	<u>17.14</u>	5.53	
CMNet (Ours)	0.28	0.17	12.88	<u>3.78</u>	

Method	$\begin{array}{ c } CRD \downarrow \\ (10^{-2}) \end{array}$	(10^{-3})	$RMSE(R) \downarrow$ (°)	$RMSE(T) \downarrow (10^{-2})$	$PA_{CRD} \uparrow$ $(\%)$	$PA_{CD} \uparrow$ (%)		
everyday								
Wu et al. [48]	28.18	19.70	54.98	15.59	35.66	36.28		
Jigsaw [24]	14.13	11.82	41.12	11.74	52.48	60.26		
PMTR [16]	6.51	<u>5.56</u>	31.57	9.95	66.95	70.56		
CMNet (Ours)	5.18	3.65	27.11	8.13	73.88	77.88		

